Fourier synthesis. A negative peak was found at the $M 2$ site, indicating that too much electron density was present in this site to model the structure. This peak suggests either more Mg atoms in this site or some Al atoms still remaining. The chosen model assumed the latter (Table 1). The K^{+}ion distribution was then determined. The K1 ion was refined in a $6 c$ site described with $\beta_{i j}$ displacement parameters: $\beta_{11}=$ $\beta_{22}=2 \beta_{12}=0.0402$ (5) and $\beta_{33}=0.000126$ (5), and thirdorder cumulant displacement parameters, $\gamma_{i j k}: \gamma_{111}=-\gamma_{222}=$ $2 \gamma_{112}=-2 \gamma_{122}=0.018(1), \gamma_{333}=-0.00003(1)$ and $\gamma_{133}=$ $-\gamma_{233}=2 \gamma_{123}=0.00054$ (6). An extra K^{+}ion had to be included at an $18 h$ site with isotropic displacement parameters. The total number of K^{+}ions was constrained to be 1.67 per formula unit. This constraint was also based on the starting amount of sodium ions as determined by chemical analysis with atomic absorption spectroscopy and the weightexchange measurements. Refinement tests were carried out on the reliability of the constraints of the occupations for the Mg atoms and the K^{+}ions. The occupations were refined freely but no significant difference from the constrained occupations was noticed. The constraints were then kept in the final refinements to reduce the number of refined parameters.

Data reduction: STOEDATR (Lundgren, 1982). Program(s) used to refine structure: DUPALS (Lundgren, 1982). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: DISTAN (Lundgren, 1982).

This work has been supported by grants from The United States Office of Naval Research (ONR) and The Swedish Natural Science Research Council (NFR). The author would like to thank Professor Josh Thomas (University of Uppsala) for his many useful and inspiring suggestions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1232). Services for accessing these data are described at the back of the journal

References

Aka, G., Dunn B., Foreman, J. \& Farrington, G. C. (1990). Solid State Ionics, 40/41. 83-86.
Becker, P. J. \& Coppens, P. (1974). Acta Crust. A30, 129-147.
Bettman, M. \& Peters, C. R. (1969). J. Phys. Chem. 73, 1774-1780.
Brinkhoff, H. C. (1974). J. Phys. Chem. Solids, 35, 1225-1229.
Brown, G. M., Schwinn, D. A.. Bates, J. B. \& Brundage. W. E. (1981) Solid State Ionics, 5, 147-150.
Edström, K., Faltens, T. A. \& Dunn, B. (1998). Solid State Ionics. 110, 137-144.
Edström, K., Thomas, J. O. \& Farrington, G. (1997). Acta Crrust. B53, 631-638.
Faltens, T. A. \& Dunn, B. (1993). Solid State lonics, 66, 321-329.
Frase, K. G., Thomas, J. O. \& Farrington, G. C. (1983). Solid State Ionics, 9/10, 307-310.
Iyi, N., Inoue, Z. \& Kimura, S. (1986). J. Solid State Chem. 61, 81-89
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kummer, J. T. (1972). Progress in Solid State Chemistř, Vol. 1, edited by H. Reiss \& J. O. McCaldin, pp. 141-175. Oxford: Pergamon.
Lehman, M. S. \& Larsen, F. K. (1974). Acta Cnvst. A30, 580-584.
Lundgren, J.-O. (1982). Crystallographic Computer Programs. Report UUIC-B13-04-05. Institute of Chemistry, University of Uppsala. Sweden.

McCandlish, L. E., Stout, G. H. \& Andrews, L. C. (1975). Acta Cryst A31, 245-249.
Michiue, Y.. Watanabe, M. \& Fujiki, Y. (1989). Solid State Ionics, 35, 223-227.
Taulelle, F., Maquet, J., Lucas, V.. Thery, J., Kahn-Harari. A., Faltens, T. A. \& Dunn, B. (1993). Appl. Magn. Reson. 4. 101-106.

Thomas, J. O. \& Zendejas, M. A. (1989). J. Comput.-Aided Mol. Des. 3, 311-325.

Acta Cryst. (1999). C55, 1388-1391

$\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}, \mathrm{a}$ new compound containing chains formed by magnesium and paradodecahedral tungstate ions

Jing Li, ${ }^{a}$ Ru-Jı Wang ${ }^{b}$ and Charlie C. Torardi ${ }^{c}$
${ }^{a}$ Department of Chemistry, Rutgers University; Camden, NJ 08102, USA, ${ }^{b}$ Analysis Center, Tsinghua University; Beijing 100084, People's Republic of China, and 'Central Research and Development, DuPont Company; Experimental Station, Wilmington, DE 19880, USA. E-mail: wangrj@sam. chem.tsinghua.edu.cn

(Received 10 February 1999: accepted 5 May 1999)

Abstract

A new ammonium magnesium paradodecatungstate decahydrate, namely diammonium octadecaaquahydrogentetramagnesiododecatungstate decahydrate, $\left(\mathrm{NH}_{4}\right)_{2}-$ $\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$, was prepared by the reaction of $\left(\mathrm{NH}_{4}\right)_{10}\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with MgCl_{2} in aqueous solution. The skeleton of the paradodecatungstate ion, $\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right]^{10-}$, is basically the same as those in the known paradodecatungstates. It consists of 12 interconnected WO_{6} octahedra and its centre is located at a crystallographic inversion centre. Both independent Mg atoms are octahedrally coordinated by six O atoms. One magnesium octahedron shares an O atom with a paradodecatungstate group and the other magnesium octahedron shares two O atoms, each with different paradodecatungstate groups, to form a one-dimensional $\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right]_{n}^{2 n-}$ chain along the b direction.

Comment

Many paradodecatungstates have been investigated by X-ray diffraction methods; examples include $\left(\mathrm{NH}_{4}\right)_{10}\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (D'Amore \& Allman, 1972), $\mathrm{Na}_{10}\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 20 \mathrm{H}_{2} \mathrm{O}$ (Chrissafidou et al., 1995), $\mathrm{K}_{10}\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 7.5 \mathrm{H}_{2} \mathrm{O}$ (Evans et al., 1993) and $\mathrm{Mg}_{5}-$ $\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 38 \mathrm{H}_{2} \mathrm{O}$ (Tsay \& Silverton, 1973). The po-
sitions of two non-labile H atoms in the centre of a paradodecatungstate anion, $\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right]^{10-}$, have been determined by neutron diffraction (Evans \& Prince, 1983). All the compounds mentioned above were prepared from the corresponding tungstate and consist of discrete anions, $\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right]^{10-}$ or $\left\{\left[\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]_{4}\left[\mathrm{H}_{2}-\right.\right.$ $\left.\left.\mathrm{W}_{12} \mathrm{O}_{42}\right]\right\}^{2-}$, cations and lattice water. To our knowledge, only one paradodecatungstate containing chainlike polyanions, $\left[\mathrm{Co}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right]_{n}^{6 n-}$, has been reported (Gimńez-Saiz et al., 1995). We report here a new paradodecatungstate, $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12^{-}}\right.\right.$ $\left.\left.\mathrm{O}_{42}\right)\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$, prepared by the reaction of $\left(\mathrm{NH}_{4}\right)_{10}\left[\mathrm{H}_{2}-\right.$ $\left.\mathrm{W}_{12} \mathrm{O}_{42}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ with MgCl_{2} in aqueous solution, which also contains one-dimensional anion chains.

The title crystal consists of one-dimensional $\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right]_{n}^{2 n-}$ anions, discrete NH_{4}^{+} cations and lattice water. The skeleton of the paradodecatungstate group is shown in Fig. 1 and is very similar to those in the known paradodecatungstates (D'Amore \& Allman, 1972; Chrissafidou et al., 1995; Evans et al., 1993; Tsay \& Silverton, 1973). It consists of $12 \mathrm{WO}_{6}$ octahedra and its centre is located at a crystallographic inversion centre ($0, \frac{1}{2}, 0$ for the structure as reported here). The W-O distances (Table 1) can be divided into four groups: (i) tungsten-terminal oxygen, 1.69 (1)-1.74 (1) A ; (ii) tungsten-oxygen linked to magnesium, 1.70 (1)-1.74 (1) \AA; (iii) tungsten-bridging oxygen, 1.78 (1)-2.22 (1) \AA; and (iv) tungsten-internal
oxygen common to three W atoms, $1.89(1)-2.27(1) \AA$, which are comparable with those in $\mathrm{Mg}_{5}\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right]$-$38 \mathrm{H}_{2} \mathrm{O}$ (Tsay \& Silverton, 1973) and $\mathrm{K}_{6}\left[\left(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right)_{2}-\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right] \cdot 14 \mathrm{H}_{2} \mathrm{O}$ (Gimńez-Saiz et al., 1995). Of the six independent coordination octahedra of tungsten, the octahedra for W3, W5 and W6 share two edges and two corners with other tungsten octahedra. As reported by Evans \& Prince (1983), the non-labile H atom is bonded to the central O12 atom shared by W3, W5 and W6. The W4 octahedron shares one edge and two corners with adjacent tungsten octahedra, W2 shares two edges with octahedra of tungsten and one corner with an octahedron of magnesium, and W1 shares one edge and two corners with octahedra of tungsten and two corners with octahedra of magnesium. Each Mg atom, octahedrally coordinated by six O atoms, has Mg O bonds very close in magnitude [2.03 (2)-2.10 (2) \AA A $]$, but five O atoms of six around Mg 1 are from coordinated water and the last is shared with a tungsten octahedron, while around Mg 2, four are from water and two are shared with tungsten octahedra. The midpoint between Mg 2 and $\mathrm{Mg}_{2}{ }^{i 1}$ at the upper right of Fig. 1 is the crystallographic inversion centre ($0,0,0$) and the midpoint between Mg^{2} and $\mathrm{Mg}^{2 i i}$ at the lower left is the inversion centre ($0,1,0$). Therefore, one-dimensional $\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right]_{n}^{2 n-}$ chains are formed and are extended along the b direction. An $\mathrm{Mg}_{2} \mathrm{~W}_{2} \mathrm{O}_{4}$ eightmembered ring is formed by sharing O atoms between

Fig. 1. ORTEX (McArdle, 1993) drawing of the structure of $\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right]_{n}^{2 n-}$ with 50% probability ellipsoids, showing the atomic numbering scheme. [Symmetry codes: (i) $-x, 1-y,-z$; (ii) $-x, 2-y,-z$; (iii) $x,-1+y, z$.]
two magnesium octahedra and two tungsten octahedra, which is different from the structure of $\left[\mathrm{Co}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right]_{n}^{6 n-}$ (Gimńez-Saiz et al., 1995). Fig. 2 is a packing view along the c direction. It is impossible to distinguish between the N atoms of discrete NH_{4}^{+}cations and the O atoms from lattice water in a structure of this type because of the presence of heavy W atoms, so the electron-density peak was assigned to be N according to its environment and to balance the charge of the crystal. The contact distances listed in Table 2 indicate the presence of a system of hydrogen bonds, but no attempt has been made to interpret their contribution to the stability of the structure.

Fig. 2. A packing view along the c direction with double-shaded circles for W , single-shaded circles for N of NH_{4}^{+}and O of lattice water molecules, and open circles for Mg . The O atoms coordinated to W and Mg atoms have been omitted for clarity.

Experimental

$\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(7.47 \mathrm{~g}$, EM Scientific) was dissolved in distilled water (50 ml). The resulting clear solution was added with stirring to a cloudy boiling solution of $\left(\mathrm{NH}_{4}\right)_{10}\left[\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (9.59 g , Johnson-Matthey) and distilled water (150 ml). The resulting solution was boiled for a short time until a white precipitate began to form. The heat was then turned down to $\sim 353 \mathrm{~K}$. The mixture was capped and stirred overnight. Heating was continued the following morning (below the boiling point) until approximately 50 ml of liquid remained. A large quantity of the white precipitate was then collected on a filter and washed with water and then acetone. Transparent thin plate-shaped crystals were found in the product. Subsequent powder X-ray diffraction analysis indicated the product consisted of almost single-phase $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18}\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right] \cdot 10 \mathrm{H}_{2} \mathrm{O}$.

Crystal data

$$
\begin{aligned}
& \left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Mg}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{18-}\right. \\
& \left.\quad\left(\mathrm{H}_{2} \mathrm{~W}_{12} \mathrm{O}_{42}\right)\right] \cdot 10 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=3517.99 \\
& \text { Monoclinic } \\
& P 2_{1} / n
\end{aligned}
$$

```
a=14.045(3) \AA
b=12.932(3) \AA
c=17.099(3) \AA
\beta=101.08 (3)}\mp@subsup{}{}{\circ
V=3047.8(11) \AA }\mp@subsup{}{}{3
Z=2
D}=3.833\mp@subsup{Mgg m}{}{-3
Dm
```


Data collection

Enraf-Nonius CAD-4
diffractometer
ω scan
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.151, T_{\text {max }}=0.506$
5545 measured reflections 5354 independent reflections

Refinement

Refinement on F^{2}
$R(F)=0.072$
$n \cdot R\left(F^{2}\right)=0.113$
$S=1.165$
5354 reflections
225 parameters
$n=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)\right]$
$(\Delta / \sigma)_{\text {max }}=0.029$
$\Delta \rho_{\text {max }}=3.927 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-3.139 \mathrm{e}^{-3}$
Table 1. Selected bond lengths (\AA)

W1-O6	1.696 (14)	W'5-O20	1.729 (1.5)
W1-O5	1.745 (1.3)	W'5-O13	1.859 (1.3)
W'1--()4	1.823 (14)	W'5-O19	1.893 (13)
W1-OI	1.996 (16)	WS-O18	1.963 (12)
W1-O3	2.180 (13)	W5-04	1.994 (14)
W1-O2	2.203 (12)	W5-O12	2.263 (12)
W2--O9	1.698 (14)	W6-021	1.724 (15)
W2-O10	$1.731(14)$	W6-O3	1.834 (14)
W2-O1	1.915 (14)	W6-08	1.891 (12)
W2-O7	1.931 (13)	W6-O14 ${ }^{\prime}$	1.964 (12)
W2-O2	2.261 (14)	W6-O19	2.101 (13)
W2-O8	2.269 (12)	W6-O12'	2.265 (12)
W3-015	1.717 (12)	$\mathrm{MgI}-\mathrm{O} 23$	2.04 (2)
W3-O11	1.782 (15)	$\mathrm{Mgl}-\mathrm{O} 25$	2.03 (2)
W3-O2	1.906 (13)	$\mathrm{Mgl}-\mathrm{O} 24$	2.07 (2)
W3-O14	1.935 (13)	$\mathrm{Mgl}-\mathrm{O} 9$	2.074 (16)
W3-013	2.121 (14)	$\mathrm{Mgl}-\mathrm{O} 26$	2.08 (2)
W3-O12	2.216 (11)	$\mathrm{Mgl-O} 22$	2.08 (3)
W4-017	1.696 (16)	Mg2-O.	2.039 (15)
W4-O16	1.736 (14)	$\mathrm{Mg} 2-\mathrm{O} 30$	2.058 (17)
W4-018	1.844 (1.3)	Mg2--O6 ${ }^{11}$	2.086 (15)
W4-07	1.966(1.3)	Mg2-O28	2.093 (17)
W4-011	2.213 (15)	Mg2-029	2.098 (17)
W4-O8	2.238 (12)	Mg 2 - 027	2.101 (16)

Symmetry codes: (i) $-x, 1-y,-z:$ (ii) $-x, 2-y, \cdots$
$\mu=22.719 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Thin plate
$0.10 \times 0.10 \times 0.03 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=24.97^{\circ}$
$h=-16 \rightarrow 16$
$k=0 \rightarrow 15$
$l=0 \rightarrow 20$
3 standard reflections
frequency: 120 min intensity decay: $\pm 2.1 \%$

Extinction correction: SHELX97 (Sheldrick, 1997)

Extinction coefficient: $8.8(6) \times 10^{-5}$
Scattering factors from International Tables for Crustallography (Vol. C)

Table 2. Contact distances (\AA)

$\mathrm{N} 1 . . . \mathrm{O}^{1}$	3.11 (3)	O2W . . ${ }^{\text {O }}$ SWA ${ }^{\text {'11 }}$	3.01 (6)
$\mathrm{N} 1 . . \mathrm{O} 5^{1}$	3.14 (3)	O3W.. O10 ${ }^{\text {1 }}$	2.99 (3)
N1. . O10"	3.14 (3)	O3W...014	2.81 (3)
NI. . Oll	3.06 (3)	O3W...O22'	2.81 (4)
N1...O14	3.24 (3)	O4WA. . ${ }^{\text {Ol }}{ }^{1 \times}$	3.14 (5)
N1. . .O15"	3.18 (3)	O4WA...O22"	3.02 (6)
N1...O16	3.16 (3)		2.92 (5)

N1...()27	3.09 (3)	O4WB. . O20 ${ }^{\text {x }}$	2.70)(14)
$\mathrm{N} 1 . . \mathrm{OIW}{ }^{\prime \prime}$	2.91 (4)	O4WB. . O)2 ${ }^{1 \times}$	2.61 (14)
O1W. . O4"'	3.15 (3)	O4WB...O24 ${ }^{\text {x }}$	2.91 (14)
Olw. . Ols"	3.06 (3)	O4WB. . ()29 ${ }^{18}$	3.15 (14)
O1W. . O18 ${ }^{10}$	2.97 (3)	O4WB. . O5WB	2.36 (14)
O1W...O23	2.75 (3)	O5WA...O19 ${ }^{\text {¹ }}$	2.74 (5)
O1W. . O24*	3.17 (4)	O5WA...()25 ${ }^{11}$	2.94 (5)
OIW...O4WA"	2.57 (5)	O5WA...O29 ${ }^{\text {² }}$	2.73 (5)
OIW...O4WB'	2.81 (14)	O5WB . . O19 ${ }^{\text {¹ }}$	2.84 (7)
$\mathrm{O} 2 \mathrm{~W} \cdot . \mathrm{O} 20^{\prime \prime}$	3.14 (4)	OSWB...O20 ${ }^{\text {x }}$	3.12 (7)
O2W...O2I ${ }^{\text {"1 }}$	3.07 (4)	O5WB...O22 ${ }^{\text {1x }}$	2.83 (7)
O2W...O24	2.72 (4)	O5WB. . ${ }^{2} 29^{1 \times}$	2.89 (7)
O2W. . O27 ${ }^{\text {II }}$	2.79 (4)		

Symmetry codes: (i) $-x, 1-y,-z$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iii) $\frac{1}{2}+x, \frac{3}{2}-y, \frac{1}{2}+z$ (iv) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z ;$ (v) $x-\frac{1}{2}, \frac{3}{2}-y, \frac{1}{2}+z ;$ (vi) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z ;$ (vii) $1+x, y, z ;$ (viii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (ix) $x, y \quad 1,1+z$; (x) $-x, 1-y, 1-z ;(x i) 1-x, 1-y, 1-z$ (xii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$.

Two lattice water molecules, designated O4WA, O4WB, O5WA and O5WB, showed disorder. In the final refinement, the siteoccupancy factors of O4WA and O5WA were assigned to be 0.7 , and those of $04 W B$ and $05 W B 0.3$, according to the refinement results. There were 12 O atoms of paradodecatungstate and two disordered O atoms (OW4B and O5WB) became 'non-positive-definite' when all atoms were refined anisotropically. The N and O atoms were then refined isotropically in the final refinement. The isotropic displacement parameters of the 12 O atoms ranged from 0.008 to $0.030 \AA^{2}$, which are comparable with those of the other O atoms in the paradodecatungstate $\left(0.011-0.027 \AA^{2}\right)$. The largest residual electron-density peaks were located around W atoms.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992). Cell refinement: CAD-4-PC Software. Data reduction: XCAD4 (Harms, 1997). Program(s) used to solve structure: SHELX97 (Sheldrick, 1997). Program(s) used to refine structure: SHELX97. Molecular graphics: SCHAKAL92 (Keller, 1992) and ORTEX (McArdle, 1993). Software used to prepare material for publication: SHELXL97.

JL is grateful to Rutgers University for the FASP Leave opportunity during the fall of 1997. We also thank the National Science Foundation for partial support via an International Collaborative Program (DMR-9553066) and travel funds from DuPont Company.

[^0]
References

Chrissafidou, A., Fuchs, J., Hartl, H. \& Palm, R. (1995). Z. Naturforsch. Teil B, 50. 217-222.
D'Amore, H. \& Allman. R. (1972). Z. Kristallogr. 136, 23-47.
Enraf-Nonius (1992). CAD-4-PC Sofiware. Version 1.1. EnrafNonius, Delft, The Netherlands.
Evans, H. T. Jr, Kortz, U. \& Jameson. G. B. (1993). Acta Crnst. C49. 856-861.
Evans, H. T. Jr \& Prince, E. (1983). J. Am. Chem. Soc. 104, 48384839.

Gimńez-Saiz, C., Galǹ-Mascaros, J. R., Triki, S., Coronado, E. \& Ouahab, L. (1995). Inorg. Chem. 34, 524-526.
Harms, K. (1997). XCAD4. Program for the Reduction of CAD-4 Diffractometer Data. University of Marburg, Germany.
Keller, E. (1992). SCHAKAL92. Program for the Graphic Representation of Molecular and Crystallographic Models. University of Freiburg, Germany.

Acta Cryst. (1999). C55, 1391-1393

$\mathrm{K}_{2} \mathbf{N b A l O}_{2}\left[(\mathrm{As}, \mathbf{N b}) \mathrm{O}_{4}\right]_{2}$, isostructural with KTiOPO_{4}

Takeshi Nakagawa, ${ }^{a}$ Takeo Matsumoto, ${ }^{a}$ Valery I. Chani ${ }^{b}$ and Tsuguo Fukuda ${ }^{h}$
${ }^{a}$ Department of Earth Sciences, Faculty of Science, Kanazawa University, Kakumamachi, Kanazawa 9201192, Japan, and ${ }^{\text {b }}$ Institute for Materials Research, Tohoku University, Katahira, Senndai 9808577, Japan. E-mail: jungle@kenroku.ipc.kanazawa-u.ac.jp
(Received 20 January 1998; accepted 12 April 1999)

Abstract

The title compound, potassium niobium aluminium arsenate (KNAA), is isostructural with KTiOPO_{4} (KTP). In KNAA, the site corresponding to the Til sites of KTP is occupied mostly by Nb atoms, the Ti2 site is occupied predominantly by Al atoms, and the Asl and As2 tetrahedral sites are occupied mostly by As atoms. The $M 1 \mathrm{O}_{6}$ octahedron is more distorted and the $M 2 \mathrm{O}_{6}$

 octahedron is less distorted than that of KTP.
Comment

Recently, many crystals isostructural with KTiOPO_{4} (KTP) (Tordjman et al., 1974) have been synthesized because they have interesting non-linear optical properties. For example, KTP crystals are used effectively for second harmonic generation. The structures of the compounds with the general formula ($\mathrm{K}, \mathrm{Rb}, \mathrm{Tl}, \mathrm{Na}$) $\mathrm{TiO}-$ (P, As) O_{4} have been determined by single-crystal X-ray or neutron diffraction methods (Haidouri et al., 1990; Mayo et al., 1994; Thomas et al., 1990, 1992).
In this study, a new compound with the chemical formula $\mathrm{K}_{2} \mathrm{NbAlO}_{2}\left[(\mathrm{As}, \mathrm{Nb}) \mathrm{O}_{4}\right]_{2}$ (KNAA) has been synthesized by a flux method and the structure was refined using single-crystal X-ray diffraction data. The atomic coordinates, site occupancies and equivalent displacement factors are given in Table 1, the interatomic distances and angles are given in Table 2 and a projection of KNAA parallel to the c axis is shown in Fig. 1.

The structure of KNAA, isostructural with that of KTP, has six kinds of cation site, namely $M 1, M 2$,

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1227). Services for accessing these data are described at the back of the journal.

